THE EXISTENCE OF *d*-POLYTOPES WHOSE FACETS HAVE PRESCRIBED AREAS

BY

D. G. LARMAN

ABSTRACT

Three positive numbers a(1), a(2), a(3) are the lengths of the sides of some triangle if, and only if, $a(i_1) + a(i_2) < a(i_3)$ for each permutation i_1, i_2, i_3 of 1,2,3. Here we extend this result to the areas of facets of *d*-polytopes.

Introduction

Let P be a d-polytope with n + 1 facets of areas A_1, \dots, A_{n+1} respectively. Then, by projecting P onto the hyperplane spanned by the *i*th face,

$$2A_i < \sum_{j=1}^{n+1} A_j$$
, for $i = 1, \dots, n+1$.

G. Purdy [2] has asked whether or not the converse holds, i.e., if A_1, \dots, A_{n+1} are positive numbers with

$$2A_i < \sum_{j=1}^{n+1} A_j$$
, for $i = 1, \dots, n+1$,

does there exist in each E^d , $2 \le d \le n$, a *d*-polytope *P* with n + 1 facets of areas A_1, \dots, A_{n+1} respectively? The purpose of this note is to prove that this is true.

THEOREM. Suppose A_1, \dots, A_{n+1} are positive numbers with $2A_i < \sum_{j=1}^{n+1} A_j$, $i = 1, \dots, n+1$. Then in any E^d , $2 \le d \le n$, there exists a d-polytope P with n+1facets F_1, \dots, F_{n+1} such that the d-1 dimensional area of F_i is A_i , $i = 1, \dots, n+1$.

LEMMA (Minkowski [1]). Let a_1, \dots, a_{n+1} be non-zero vectors, whose directions are distinct, which span E^d and suppose $a_1 + \dots + a_{n+1} = 0$. Then there exists a d-polytope P in E^d with n + 1 facets F_1, \dots, F_{n+1} such that $a_i / |a_i|$ is the outward

Received January 16, 1977 and in revised form May 24, 1977

D. G. LARMAN

normal to F_i and $|a_i|$ is the d-1 dimensional area of F_i , $i = 1, \dots, n+1$. Conversely, if P is a d-polytope in E^d with facets F_1, \dots, F_{n+1} and outward normals u_1, \dots, u_{n+1} then $|F_1|u_1, \dots, |F_{n+1}|u_{n+1}$ span E^d and

$$|F_1|u_1 + \cdots + |F_{n+1}|u_{n+1} = 0.$$

PROOF OF THE THEOREM. If d = 2 then k can be chosen, $1 < k \le n$ so that

$$A_1 + \cdots + A_{k-1} \leq A_{k+1} + \cdots + A_{n+1},$$

 $A_1 + \cdots + A_k > A_{k+1} + \cdots + A_{n+1}.$

Consider a triangle with sides of length A_k , $A_1 + \cdots + A_{k-1}$, $A_{k+1} + \cdots + A_{n+1}$ respectively. By breaking the sides (outwards) at the required points, the required example is obtained.

So it may be supposed that $d \ge 3$ and we may suppose that $A_1 \le A_2 \le \cdots \le A_{n+1}$. We assert that there exist unit vectors u_1, \dots, u_n ; v_1, \dots, v_n in general position such that

(1)
$$\left|\sum_{i=1}^{n} A_{i}\boldsymbol{u}_{i}\right| > A_{n+1},$$

(2)
$$\left|\sum_{i=1}^{n} A_{i} v_{i}\right| < A_{n+1}.$$

Since $\sum_{i=1}^{n} A_i > A_{n+1}$, (1) is established by slightly perturbing each term of the vector $A_1 u + \cdots + A_n u$ for some unit vector u and (2) is established by slightly perturbing each term of $A_n u - A_{n-1} u + \cdots + (-1)^{n+1} A_1 u$ for some unit vector u.

On the sphere S^{d-1} we choose paths P_i between u_i and v_i which do not pass through u_i , v_i , $j \neq i$. If z_i is a point on P_i consider the vector

$$w(z_i) = A_i z_i + \sum_{j=1}^{i-1} A_j u_j + \sum_{j=i+1}^{n} A_j v_j.$$

In view of (1), (2), $|w(u_1)| < A_{n+1}$, $|w(u_n)| > A_{n+1}$. Consequently there exists *i* and z_i^* such that

$$|w(z^*_i)| = A_{n+1}.$$

Some difficulty arises in ensuring that the vectors $-w(z_i^*)$, $A_i z_i^*$, $A_i u_1, \dots, A_{i-1} u_{i-1}$, $A_{i+1} v_{i+1}, \dots, A_n v_n$ are distinct and span E^d . This may be ensured by arranging that $w(z_i)$ is never antipodal to any of u_1, \dots, u_n ; v_1, \dots, v_n ; z_i or, if n = d, that $|w(z_i)| \neq A_{d+1}$ when z_i is in the d-1 subspace $lin \{u_1, \dots, u_{i-1}, v_{i+1}, \dots, v_d\}$. To arrange this we slightly deviate from the path P_i if necessary.

Then, using the vectors $-w(z_i^*)$, $A_i z_i^*$, $A_1 u_1, \dots, A_{i-1} u_{i-1}$, $A_{i+1} v_{i+1}, \dots, A_n v_n$ in the lemma completes the proof of the theorem.

REFERENCES

1. H. Minkowski, Allgemeine Lehrsätze über die konvexe Polyheder, in Nachr. Ges. Wiss. Göttingen, 1897, pp. 198-219.

2. G. Purdy, Spheres tangent to all the faces of a simplex, J. Combinatorial Theory 17 (1974), 131-133.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WASHINGTON SEATTLE, WA 98195 USA